

Proposed Academic Year	2021-22	Last Reviewed Academic Year	2018-19
Course Code	PHYS182	Course Title	Physics I Lab
Credit hours	1	Level of study	Undergraduate
College / Centre	CAHS	Department	DBS
Co-requisites	PHYS102	Pre-requisites	None

1. COURSE OUTLINE

[Physics is an experimental science. The theory that is presented in lectures has its origins and is validated by experimental measurement through experiments. Physics 182 laboratory is the lab companion for PHYS102 theory. This course focuses on experiments of the basic principles and concepts in Physics 102. It is designed for students who will take their undergraduate degree programs in Engineering and Applied Sciences.

2. AIMS

[.The aim of this module is to lay a firm foundation for students to apply the basic principles and laws of Physics. The module will introduce students to calorimeters, magnetic field lines, optical constants of glass slabs, mirrors and lenses, AC signals and RLC series circuits. It will develop experimental techniques, in particular skills of data analysis, the understanding of experimental uncertainty, and the development of graphical visualization of data.

3. LEARNING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS				
Lea (De Up this abl	arning Outcomes afinitive) on successful completion of a course, students will be e to:	Teaching and Learning methods <i>(Indicative)</i>	Assessment (Indicative)	
1.	Demonstrate an understanding specific heat capacity of a solid object	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment	
2.	Analyse the magnetic field lines around a bar magnet	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment	
3.	Measure the amplitude and frequency of AC signals generated using a CRO	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment	
4.	Construct and analyse the series RLC circuits	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment	
5.	Determine the angle of refraction and measure the critical angle.	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment	

6.	Graphically represent and analyse experimental data.	Lecture and Demonstration Lab Work ,Group work	Lab work sheet, Pre lab assignment Written Examination
	and analyse experimental data.	Lab Work ,Group work	Pre lab assignment Written Examination

ASSESSMENT WEIGHTING		
Assessment	Percentage of final mark (%)	
Midterm Examination	20%	
Lab Report		
	20%	
Quizzes	20%	
Final Examination	40%	
TOTAL	100%	

5. ACHIEVING A PASS

Students will achieve <u>1</u> credit hours for this course by passing <u>ALL</u> of the course assessments [alternatively, list the compulsory pass assessments*] and achieving a minimum overall score of <u>50%</u>

NB *Ensure that ALL learning outcomes are taken into account

6. COURSE CONTENT (Indicative)		
Specific Heat Capacity of A Solid		
Magnetic Field and Magnetic Lines of Force		
Analysis of an R-L Series Ac Circuit		
Analysis of an R-C Series Ac Circuit		
Analysis of An RLC Series Ac Circuit		
Measurement Of Amplitude and Frequency of AC Signals Using A CRO		
Refraction and Total Internal Reflection of Light		
Optical Constants of a Convex Lens		
Focal Length of A Concave Mirror		
TOTAL HOURS		
Plus RECOMMENDED INDEPENDENT STUDY HOURS		
TOTAL COURSE HOURS		

7. RECOMMENDED REFERENCES

Core text/s:

Walker James S (2016) Fourth edition Pearson international edition

Giancoli, Douglas C (2014) Physics: Principles with Application Seventh Edition Pearson Prentice Hall International edition

Library + online resources:

http://www.physics.smu.edu/~scalise/apparatus/caliper/ http://www.technologystudent.com/equip1/microm1.htm http://physicscatalyst.com/elec/current_4.php http://hyperphysics.phy-astr.gsu.edu/hbase/electric/ohmlaw.html http://moodle.asu.edu.om/course/view.php?id=8463

Open Educational Resources:

https://archive.org/stream/physics00paul# https://archive.org/stream/isbn_9780470379257# https://openlibrary.org/works/OL2538490W/Fundamentals_of_physics