

Proposed Academic Year	2021-2022	Last Reviewed Academic Year	2020-2021
Course Code	Math305	Course Title	Numerical Methods
Credit hours	3	Level of study	Year3
College / Centre	Applied and Health Science	Department	Basic Science
Co-requisites	Nil	Pre-requisites	FPPM002 GFP Pure Mathematics

1. COURSE OUTLINE

This course will emphasize the development of numerical algorithms to provide solutions to common problems formulated in science and engineering. The primary objective of the course is to develop the basic understanding of the construction of numerical algorithms, and perhaps more importantly, the applicability and limits of their appropriate use. The emphasis of the course will be the thorough study of numerical algorithms to understand (I) the guaranteed accuracy that various methods provide, (2) the efficiency and scalability for large scale systems. And (3) issues of stability. Topics include the standard algorithms for numerical computation: root finding for nonlinear equations, interpolation and approximation of functions by simpler computational building blocks (for example - polynomials and splines), numerical solutions of ordinary differential equations and boundary value problems, numerical optimization and regularization algorithms

2. AIMS

An important component of numerical analysis is computational implementation of algorithms which are developed in the course in order to observe first-hand the issues of accuracy, computational work effort, and stability. Exercises will include computational experiments in a programming language of the student's choice. One class lecture will be devoted to a high level pseudo-code type programming language (Matlab) which will suffice in case students have not had prior programming experience.

3.	LEARNING OUTCOMES,	NING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS			
Lea (De	arning Outcomes afinitive)	Teaching and Learning methods (Indicative)	Assessment <i>(Indicative)</i>		
Upo this able	on successful completion of course, students will be e to:				
1.	Apply standard techniques	lectures, power point	quiz 1/mid-term test -1/ Final		
	to analyze key properties	presentations lab	exam		
	of numerical algorithms	demonstration and lab work			

Course Descriptor < Math305-Numerical Methods>

	such as stability and		
	convergence.		
2.	Implement a range of numerical algorithms efficiently in Matlab	Lab work, demonstration	Quiz 2/ Mid-tem 2/ Final exam
3.	Perform data analysis efficiently and accurately using data fitting methods,	Lectures, discussions, group work. assignment	Quiz/mid-term test 1/Final exam
4.	Derive and analyze numerical methods for Calculus	Lab work, power point presentations, demonstration	mid-term test 1/ Final exam

4. ASSESSMENT WEIGHTING

Assessment	Percentage of final mark (%)
Quiz 1	10%
Quiz 2	10%
Midterm Exam	20%
Assignment	10%
Participation	10%
Final exam	40%
TOTAL	100%

5. ACHIEVING A PASS

Students will achieve 3 credit hours for this course by achieving a minimum overall score of 50% and attending at least 80% of class lectures.

6. COURSE CONTENT (Indicative)

CHAP3: Approximations and Round-Off Errors

- **3.1Significant Figures**
- 3.2 Accuracy and Precision
- 3.3 Error Definitions
- 3.4 Round-Off Errors

CHAP5: Bracketing Methods

- 5.1 Graphical Methods
- 5.2 The Bisection Method
- 5.3 The False-Position Method

CHAP6: Open Methods	
6.1 Simple Fixed-Point Iteration	
6.2 The Newton-Raphson Method	
6.3 The Secant Method	
CHAP18: Interpolation	
18.1 Newton's Divided-Difference Interpolating Polynomials	
18.2 Lagrange Interpolating Polynomials	
18.6 Spline Interpolation	
CHAP21: Newton-Cotes Integration Formulas	
21.1 The Trapezoidal Rule	
21.2 Simpson's Rules	
CHAP25: Runge-Kutta Methods	
25.1 Fuler's Method	
25.1 Eucli S Method 25.2 Improvements of Euler's Method	
25.2 Pungo Kutta Mothoda	
23.5 Kunge-Kuna Methods	
TOTAL HOURS	45
	U
TOTAL COURSE HOURS	45

7. RECOMMENDED REFERENCES

Numerical Methods for Engineers: With Software and Programming Applications by StevenC. Chapra, Raymond P. Canale, 6th edition, ISBN 978–0–07–340106–5, (2010)

Library + online resources:

Library + online resources: <u>www.wolphramalpha.com</u> <u>https://cosmolearning.org/video-lectures/excel-bisection-example/</u> www.desmos.com

