

Course Descriptor CVEN350 THERMOFLUIDS ENGINEERING

Proposed Academic Year	2020/2021	Last Reviewed Academic Year	2019/2020
Course Code	CVEN350	Course Title	THERMOFLUIDS ENGINEERING
Credit hours	3	Level of study	Third
College / Centre	College of Engineering	Department	Environmental Engineering
Co-requisites	MATH305	Pre-requisites	MATH203

1. COURSE OUTLINE

This course explains fundamental principles governing fluid mechanics, heat transfer, thermodynamics, and fluid flow. Lectures covering the properties of fluids, fluid statics, momentum, entropy and energy principles, similitude, dimensional analysis, fluid flow, and heat transfer.

2. AIMS

The course provides students with concepts and techniques that enable to understand the fluid mechanics, heat transfer, thermodynamics

3. LEARNING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS (Indicative)

	arning Outcomes efinitive)	Teaching and Learning methods (Indicative)	Assessment (Indicative)
1.	Understand the thermodynamics basics	Lectures	Assignments and in-class tests
2.	Understand the fluid mechanics techniques	Lectures	Assignments and in-class tests
3.	Ability to analyze and detect the heat transfer coefficient	Lectures	Assignments and in-class tests

4. ASSESSMENT WEIGHTING

Assessment	Percentage of final mark (%)
Assignments	20%
Mid-term Examinations (two)	40%
Final Examination	40%
TOTAL	100%

5. ACHIEVING A PASS

Students will achieve <u>3</u> credit hours for this course by passing <u>ALL</u> of the course assessments and achieving a **minimum overall score of 50%**.

Course Descriptor CVEN350 THERMOFLUIDS ENGINEERING

NB *Ensure that ALL learning outcomes are taken into account

6. COURSE CONTENT (Indicative)	
LECTURE TOPIC	TIME (HOURS)
Introduction to Thermofliuds and thermodynamics	6
Thermodynamics First law	6
Thermodynamics second law	6
Thermodynamics third law and entropy	3
Carnot cycle	3
Introduction to fluid mechanics	
1. Bernoulli Equation analysis	6
2. Water Hammer	0
3. Energy losses analysis	
Fluid laminar and turbulence flow	
1. Open channel experiment	6
2. Sedimentation measurements	U U
3. Reynolds number calculation	
Introduction to heat transfer	3
Heat transfer coefficient and heat exchanger	6
TOTAL HOURS	45
Plus RECOMMENDED INDEPENDENT STUDY HOURS	
TOTAL COURSE HOURS	45

7. RECOMMENDED READING

Core text/s:

Engineering Thermofluids Thermodynamics, Fluid Mechanics, and Heat Transfer, Massoud Mahmoud, 2005

Library + online resources: https://www.oercommons.org/courseware/module/10674/overview

https://legacy.saylor.org/me201/Intro/

https://www.oercommons.org/courses/heat-transfer/view