

Course Descriptor

CVEN553 WATER RESOURCES ENGINEERING

Proposed Academic Year	2020-2021	Last Reviewed Academic Year	Fall 2020
Course Code	CVEN553	Course Title	Water Resources Engineering
Credit hours	3	Level of study	4 th Year
College / Centre	COE	Department	Civil and Environmental
Co-requisites	None	Pre-requisites	None

1. COURSE OUTLINE

Introduction to water quality, rivers and streams, lakes and reservoirs, estuaries, bays, harbours. Modeling the processes and parameters that determine the fate of man-made discharges on surface water quality. Understand the major technical and non-technical considerations required in providing adequate planning and management of water resources projects.

2. AIMS

[The course provides students with understanding of the different water resources, their quality and models applied in engineering

3. LEARNING OUTCOMES, Learning Outcomes (Definitive)		Teaching and Learning methods (Indicative)	Assessment (Indicative)
this	on successful completion of s course, students will be e to:		
1.	Model the processes and parameters that determine the fate of man-made discharges on surface water quality	Lectures	Assignments and in-class tests
2.	Understand the major technical and non-technical considerations required in providing adequate planning and management of water resources projects	Lectures	Assignments and in-class tests
3.	Modeling groundwater flow in consideration of regional flow descriptions and water resource development	Lectures and Lab	
4.	Modeling groundwater contamination sources and strategies to prevent and mitigate them	Lectures and Lab	

4. ASSESSMENT WEIGHTING

Course Descriptor

CVEN553 WATER RESOURCES ENGINEERING

Assessment	Percentage of final mark (%)	
Assignments + project	20%	
Mid-term Examination,		
First Midterm	20%	
Second Midterm	20%	
Final Examination	40%	
TOTAL	100%	

5. ACHIEVING A PASS

Students will achieve **3** credit hours for this course by passing **ALL** of the course assessments and achieving a **minimum overall score of 50%**

NB *Ensure that ALL learning outcomes are taken into account

6. COURSE CONTENT (Indicative)	
Introduction to water quality and engineering	
Introduction, definition and terminology of water resources	
Types of Water resources: Rivers and Streams & Lakes and Reservoir	
Estuaries, Bays, and Harbours	
Water resources management and sustainability	
Hydrologic and water Budget	
Engineering economy & Decision analysis applied to Water Resources	
Water pricing and Tariff	
Supply and demand management	
Water resources development and policy	
Planning and management of water resources projects	
Case studies	
WRE software	
TOTAL HOURS	45
Plus RECOMMENDED INDEPENDENT STUDY HOURS	90
TOTAL COURSE HOURS	135

Course Descriptor

CVEN553 WATER RESOURCES ENGINEERING

7. RECOMMENDED READING

Core text/s:

- 1. Cech, T. V. (2009). Principles of Water Resources: History, Development, Management, and Policy, 3rd Ed, John Wiley and Sons, Inc., New York, NY.
- 2. Fetter, C. W. (2001). Applied Hydrogeology, 4th Ed, Prentice Hall, Englewood Cliffs, NJ

The two books are available on the moodel in pdf format.

Library + online resources:

Lambert, R. (2017). *Water Resources: Systems, Management and Investigations*, Nova Science Publishers, Inc. NY, <u>https://www.masader.om/eds/detail?db=e000xww&an=1512175</u>

Vedula, S. and Prasad, R. (2002). *Research Perspectives in Hydraulics and Water Resources Engineering*, World Scientific, River Edge, NJ. <u>masader.om/eds/detail?db=e000xww&an=210583&isbn=9789812777614</u>