

Course Descriptor CVEN545 Analysis of Structures II

ACADEMIC YEAR	2020-21	SEMESTER	Fall
Course Code	CVEN545	Course Title	Analysis of Structures II
Credit hours	3	Level of study	Undergraduate
College / Centre	Engineering		
Co-requisites		Pre-requisites	CVEN 340

1. COURSE OUTLINE

[This course deals with advanced structural methods such as flexibility and stiffness matrix methods.

2. AIMS

[The aim of this course is to understand principle of member stiffness and structural stiffness relations and to determine forces and deflections of framed structures using matrix stiffness method by hand calculations.

3. LEARNING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS				
Learning Outcomes		Teaching and Learning methods	Assessment	
(Definitive)		(Indicative)	(Indicative)	
Upon successful completion of				
this course, students will be				
able to:				
1.		Lectures	Assignments	
ι ι	Understanding concepts of Variational approaches			
2. (r a	Understanding the physical interpretation of local members stiffnesses and global structural stiffness, and using their interrelationships to analyze the entire structure	Lectures	Assignments	
3.	Determine deflections and forces of plane trusses, continuous beams, plane frames, besides three- dimensional truss and frame structures	Lectures	Assignments	
4.	Understand the principles for creating computer programs which implement the matrix stiffness method	Lectures	Assignments	

4. ASSESSMENT WEIGHTING

Assessment	Percentage of final mark (%)
1 [°] Examination	20
2 ¹¹⁴ Examination	20
Assignments	20
Final Examination	40
TOTAL	100%

Course Descriptor

CVEN260 Geotechnical Engineering

5. ACHIEVING A PASS

Students will achieve 3 credit hours for this course by passing <u>ALL</u> of the course assessments and achieving a **minimum overall score of** <u>50%</u>.

6. COURSE CONTENT (Indicative)	
LECTURE TOPIC	TIME (HOURS)
Introduction	1.5
	1.5
Variational Approaches for Structural Analysis	1.5
	1.5
	1.5
Member Force-Deformation Relations	1.5
	1.5
	1.5
Stiffness Method	1.5
	1.5
	1.5
Application of Stiffness Method to Truss Problems	1.5
	1.5
	1.5
Application of Stiffness Method to Beam Problems	1.5
	1.5
	1.5
Application of Stiffness Method to Frame Problem	1.5
	1.5
	1.5
Introduction for Programming the Stiffness Method	1.5
	1.5
	1.5
	1.5
Exercises and applications	9
TOTAL HOURS	45
Plus RECOMMENDED INDEPENDENT STUDY HOURS	90
TOTAL COURSE HOURS	135

Course Descriptor CVEN260 Geotechnical Engineering

7. RECOMMENDED READING

Core text/s:

Fundamentals of Structural Analysis", Harry H. West, and Louis F. Geschwinder, 2nd Edition, John Wiley and Sons, Inc. (2002)

8. OPEN RESOURCES

https://ocw.mit.edu/courses/civil-and-environmental-engineering/1-571-structural-analysis-and-control-spring-2004/