

Course Descriptor CVEN536 PRE-STRESSED CONCRETE

ACADEMIC YEAR	2018/19		
Course Code & Title	CVEN536 PRE-STRESSED CONCRETE		
Credit hours	3	Level of study	Undergraduate
College / Centre	Engineering		
Co-requisites		Pre-requisites	CVEN340

1. COURSE OUTLINE

Analysis and design of pre-stressed concrete structures in flexure, shear, torsion and deflection of pre-stressed concrete beams and slabs, and time-dependent effects such as creep and shrinkage.

2. AIMS

To provide an understanding of the fundamental concepts of pre-stressed concrete analysis and design

3. LEARNING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS				
Learning Outcomes (Definitive) Upon successful completion of this course, students will be able to:	Teaching and Learning methods (Indicative)	Assessment (Indicative)		
1. Understand the fundamental concepts of pre-stressed concrete analysis and design	Lecturers, Presentations	Assignment, Midterms, and Final Exam		
Analyze the flexural behaviour of simple and composite pre-stressed concrete members	Lecturers, Presentations	Assignment, Midterms, and Final Exam		
3. Analyze and design pre- stressed concrete members for flexure using current design codes	Lecturers, Presentations	Assignment, Midterms, and Final Exam		
4. Understand the effects of transfer and development length on flexural and shear strengths	Lectures, Presentation	Assignment, Midterms, and Final Exam		
5. Analyze and design pre-stressed concrete members for shear	Lectures, Presentation	Assignment, Midterms, and Final Exam		

4. ASSESSMENT WEIGHTING

Course Descriptor CVEN536 PRE-STRESSED CONCRETE

Assessment	Percentage of final mark (%)
Assignments	30%
Mid term	20%
Quizzes	10%
Final Exam	40%
TOTAL	100%

5. ACHIEVING A PASS

Students will achieve 3 credit hours for this course by passing <u>ALL</u> of the course assessments [Assignments, Midterm and Final examinations] and achieving a **minimum overall score** of <u>50%</u>

NB *Ensure that ALL learning outcomes are taken into account

6. COURSE CONTENT (Indicative) LECTURE TOPIC	TIME (HOURS)
Basic concepts of pre-stressing systems: pre-tensioning vs. post-tensioning, architectural and structural precast members, and material properties	2
Basic concepts of stress analysis: initial vs. effective pre-stressing force, calculation of stresses at transfer and at service stages, location of maximum stresses in members	4
easuring Quantities	5
Allowable stresses at transfer and at service	4
Ultimate flexural strength and reinforcement requirements	5
Shear strength and minimum reinforcement requirements	4
Pre-stress losses	1
Composite construction and implication of construction sequence on stresses Design of the shear interface in composite members	4
Design of the shear interface in composite members	5
Camber and Deflection	4
Development Length and anchorage zones	1
Design and analysis of pre-stressed concrete columns	6

Course Descriptor CVEN536 PRE-STRESSED CONCRETE

TOTAL HOURS	45
Plus RECOMMENDED INDEPENDENT STUDY HOURS	
TOTAL COURSE HOURS	135

7. RECOMMENDED READING

Core text/s:

- 1. Nawy, E. G. (2010). Prestressed Concrete, 5th Ed, Prentice Hall, Upper Saddle River, NJ.
- 2. American Concrete Institute (ACI) (2008). *ACI 318-08 Building Code Requirements for Structural Concrete (ACI 318-08) and Commentary (ACI 318R-08),* American Concrete Institute, Farmington Hills, MI. (ISBN 0-87031-171-9)..

Library + online resources:

NPTEL website (nptel.ac.in) for engineering books ICE virtual library (www.ice.org.uk)