ACADEMIC YEAR	2019-20	SEMESTER	Fall Semester	
Course Code	CVEN441	Course Title	Design of Steel Structures	
Credit hours	3	Level of study	Year 4	
College / Centre	COE	Department	CVEN	
Co-requisites	Engineering	Pre-requisites	CVEN340	

1. COURSE OUTLINE

This course discusses loads on steel structures and properties of steel and common steel sections, behavior of steel structures in tension, compression, design steel beams, columns, frames, connections, etc.

2. AIMS

The aim of this course is to gain a clear understanding of the essentials of structural steel design and to acquire the ability to apply these knowledge to typical projects from a practical perspective.

3. LEARNING OUTCOMES, TEACHING, LEARNING AND ASSESSMENT METHODS

Learning Outcomes (Definitive) Upon successful completion of this course. Students will be able to:		Teaching and Learning methods (Indicative)	Assessment (Indicative)
and disac	the advantages lvantages of ctural systems lgs	Lecturer, Presentation	Assignment, Midterms, and Final Exam
procedure	and apply steel design es, philosophies and design practice	Lecturer, Presentation	Assignment, Midterms, and Final Exam
	ictural nt limit states ious loading conditions	Lecturer, Presentation	Assignment, Midterms, and Final Exam
sections f members	propriate steel or tension , compression , beams, beam-columns	Lecturer, Presentation	Assignment, Midterms, and Final Exam

4. ASSESSMENT WEIGHTING

Assessment	Percentage of final mark (%)
Quizzes	30
Mid-term Examination	20
Assignments	20
Final Examination	30
TOTAL	100

5. ACHIEVING A PASS

Students will achieve 03 credit hours for this course by passing <u>ALL</u> of the course assessments and achieving a **minimum overall score of** 50%

6. COURSE CONTENT (Indicative)

NEEK	LECTURE TOPIC	TIME (HOURS)
	Introduction	1.5
1	Introduction to steel structures	1.5
	Introduction to steel structures	1.5
2	Introduction to steel structures	1.5
	Design methods, load combinations, gravity load	1.5
3	Design methods, load combinations, gravity load	1.5
	Design methods, load combinations, gravity load	1.5
4	Design methods, load combinations, gravity load	1.5
	Tension members	1.5
5	Tension members	1.5
	Tension members	1.5
6	Tension members	1.5
7	Compression members	1.5
	Compression members	1.5
8	Compression members	1.5
	Compression members	1.5
9	Noncomposite beams	1.5
	Noncomposite beams	1.5
1	Noncomposite beams	1.5
0	Noncomposite beams	1.5
1	Compression members under combined axial and bending loads	1.5
1	Compression members under combined axial and bending loads	1.5
1	Compression members under combined axial and bending loads	1.5
2	Bolt connections	1.5
1	Bolt connections	1.5
3	Bolt connections	1.5
1	Weld connections	1.5
4	Weld connections	1.5
1	Weld connections	1.5
5	Summary	1.5

	TOTAL HOURS	45
1 - 15	Plus RECOMMENDED INDEPENDENT STUDY HOURS	90
	TOTAL COURSE HOURS	135

7. RECOMMENDED READING

Core text:

Morris, L.J., and Plum, D.R. (1996). *Structural steelwork design to BS5950*, 2nd edition. Longman, ISBN 0582230888, 9780582230880.

Online Resources:

https://www.pdfdrive.com/design-of-structural-elements-concrete-steelwork-masonryand-timber-designs-to-british-standards-and-eurocodes-3rd-edition-e161506416.html