

Course Descriptor

CVEN 333 – Mechanics of Materials

ACADEMIC YEAR	2020-2021	SEMESTER	Spring
Course Code	CVEN 333	Course Title	Mechanics of Materials
Credit hours	3	Level of study	Undergraduate
College / Centre	College of Engineering	Department	CVEN
Co-requisites		Pre-requisites	ENGR220

1. COURSE OUTLINE

Two-dimensional stresses and strains and deflections of statically-determinate members subjected to axial, torsional and transverse loads. Buckling of columns. Mohr circle and stress transformation.

2. AIMS

This course is one in a sequence of mechanics (engineering science) courses that form a foundational component of the engineering curriculum.

3. LEARNING OUTCOMES, TEACHING, LEARNING and ASSESSMENT METHODS

Learning Outcomes (Definitive)		Teaching and Learning methods (Indicative)	Assessment (Indicative)	
1.	Apply knowledge of mathematics and science	Lecturers, Presentations	Class Tests, Assignments and Final Examination	
2.	Gain a clear understanding of the basic principles of mechanics	Lecturers, Presentations	Class Tests, Assignments and Final Examination	
3.	Acquire the ability to apply the principles of mechanics to solve a wide range of engineering problems	Lecturers, Presentations	Class Tests, Assignments and Final Examination	
4.	Have an expanded understanding of mechanical properties of solid materials through hands-on experiences and personal observation	Lectures, Presentation	Class Tests, Assignments and Final Examination	
5.	Improve skills in data collection, evaluation and reporting results of laboratory experiments	Lectures, Presentation	Class Tests, Assignments and Final Examination	
6.	Work in groups but will keep individual lab notebooks and submit formal group reports, which summarize the experiments	Lectures, Presentation	Class Tests, Assignments and Final Examination	

Course Descriptor CVEN 333 – Mechanics of Materials

 Design a specific experiment, conduct the experiment, collect data, evaluate the results and present a written report. The project must investigate fundamental principles of mechanics of solids. 	Lectures, Presentation	Class Tests, Assignments and Final Examination
--	------------------------	---

4. ASSESSMENT WEIGHTING

Percentage of final mark (%)	Exam Dates
40	
1 x 20 = 20	
40	University Schedule
100%	
	mark (%) 40 1 x 20 = 20 40

5. ACHIEVING A PASS

Students will achieve $\underline{03}$ credit hours for this course by passing <u>ALL</u> of the course assessments [alternatively, list the compulsory pass assessments*] and achieving a **minimum overall score** of <u>50%</u>

NB *Ensure that ALL learning outcomes are taken into account

6. C	OURSE CONTENT (Indicative)	
WEEK	LECTURE TOPIC	TIME (HOURS)
1	Equilibrium of deformable bodies	5 hours
2	The concepts of stress, deformation, and strain <u>Experiment 1</u> : Deformation of Straight Beam Apparatus (WP950) Deformations of statically determinate and indeterminate systems placed under load by different weights	5 hours
3	Hooke's Law <u>Experiment 2</u> : Universal Material Tester (WP300) Experiments demonstrating Stress, Strain, and Hooke's Law using Steel, Aluminum, Brass and Copper specimens.	5 hours
4	(Midterm I) Axially loaded members Experiment 3: Reaction of Beams Apparatus (HFC1) Simply supported beams Simply supported beam with overhangs Cantilever beam	5 hours

Course Descriptor

VEN :	333 – Mechanics of Materials	5 hours
5	Torsion	
	Experiment 4: Torsion of Circular Section Apparatus (STR6)	
	Torsion and Angle of Twist	
		5 hours
6	Shear and moment diagrams	
	Experiment 5: Shear Force and Bending Moment Apparatus (HFC31)	
	Shear forces and Bending Moments at cut sections	
		5 hours
7	Shear stresses in transversely loaded members	
		5 hours
	Combined	
8		
	loadings, Mohr's	
	circle	
		5 hours
9	Beam deflections	
	Experiment 6: Beam Deflection Unit Apparatus	
	Bending of a metal beam under various ladings and support conditions	
	Others: 1. Laboratory Safety	
	Digital Data collection techniques	
	(Equipment: HDA200 Interface)	
	TOTAL HOURS	45
1 - 9	Plus RECOMMENDED INDEPENDENT STUDY HOURS	90
	TOTAL COURSE HOURS	135
R	ECOMMENDED READING	
ore te	xt/s:	
bbolo	r, R.C. Mechanics of Materials, 9th Ed	

Pearson

MECHANICS OF MATERIALS, SEVENTH EDITION Published by McGraw-Hill Education,

Library + online resources: https://www.pdfdrive.com/r-c-hibbeler-8th-edition-bookd200733520.html